DWI的基础是基于分子的扩散运动,同时DWI可用于疾病诊断的想法提出的也是非常的早,只是鉴于当时软硬件的限制并没能应用于临床的诊断中。
我们在实际的扫描中用到的单指数模型DWI序列是最简单也是最容易实现的模型,其主要反映的是细胞外间隙中水分子扩散的快慢。
理想模型状态下水分子能自由随机运动,表现为各向同性,在任意方向施加相应的敏感梯度得到的结果应该是一致的。
但人体内细胞间隙极其复杂,水分子所处的环境并不是理想的状态:
人体组织内的水分子受到微环境及相应屏障的影响,其受到不同程度的约束,表现为各向异性。
临床扫描中最常用的DWI实现模式:SE-EPI DWI+压脂技术。
在SE序列的180°聚焦脉冲同侧或两侧施加一对扩散敏感梯度,起到“消除那些自由扩散-运动质子的信号”,保留“那些扩散受限-静止质子的信号”,通过它们之间不同受限程度导致的信号差异获得最终的DWI对比。
临床扫描中可采用单次激发和多次激发模式,常以单次能激发为主。
扩散受限的“静止”质子经过敏感梯度场后,质子间的失相位刚好相互抵消,在TE时刻相位能完全重聚,信号得以保留,则在DWI上表现为高信号。
那么我们如何实现多大的信号得以保留,这就需要介绍在临床扫描中一个非常重要的一个参数:b值。
在DWI中有一个重要的参数b值(弥散敏感因子,单位为S/mm2),可简单的理解为施加的敏感梯度的强度。
所以要想使用高b值进行DWI扫描,则需MRI强大的硬件支持,如梯度的性能能、AD转换等方面,在实际扫描中如果硬件已经开到了最优性能,那只要通过牺牲图像质量的方式来增加持续时间δ和时间间隔Δ方式来实现。
b值选取地越大,其对分子的弥散越敏感,对扩散不受限组织的信号保留就会越少,获得更多的则是受限组织的信号,其对扩散受限病变的检出率则更高。
b值选取地越小,其对分子的弥散敏感较小,对扩散不受限组织的信号保留就会越多,其扩散不受限与受限组织间的对比较差。
B值选取地越大,对分子的弥散越敏感,组织间的对比会越强,T2穿透效应越小,对扩散受限病变的检出率则更高。但图像的信噪比越低,变形失真会越严重。
基于上述成像原理,所获得的DWI图像很容易产生相应的伪影,同时也很难获得较高的图像分辨率。在临床扫描中会面临诸多的问题:
那么在临床扫描中如何才能获得优异的DWI图像质量?b值选取多少合适?我们将在下期介绍!
版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站不拥有所有权,不承担相关法律责任。如发现有侵权/违规的内容, 联系QQ15101117,本站将立刻清除。