1. 首页 > 知识问答

产品生命周期理论(关于产品生命周期的几点思考)

产品生命周期是一个很大的过程,在这个“大过程”中,又有着一些“小过程”。对此,本文从生命周期的基本概念、数据处理、生命周期主要环节、价值点挖掘四个方面做了分析,希望对你有所帮助。

如果把一款产品比作是一艘邮轮,那么这款产品在应用市场上架的时刻,可以当做是这艘邮轮航程的起点。在这趟航程里,会有无数的乘客(用户)先后来到和离开这艘邮轮。当这艘邮轮最后一次停泊靠港时,也就是其生命周期已抵达了终点,准备在应用市场下架了。

本文首先厘清了关于生命周期的基本概念,明确了需要发力的方向,进而介绍了几个数据处理的技巧,处理后的数据相对会更友好。并对生命周期的主要环节(新增/留存/活跃/沉默)逐一展开观察和分析,最后分享了几个在生命周期分析里可以挖掘的价值点。

(注:本文所涉及的数据都已做了脱敏处理和量纲转换)

 

一、基本概念

1. 生命周期

周期这个概念,可以很玄妙,也可以很具体。往大的层面讲,可以从太阳黑子的活动规律讲起,进而深入到人类社会的康波周期,人口周期,可以说万物皆周期,万物都处在周期的运行过程之中。往小的层面讲,一款产品,产品里的用户,都有一个(或几个)生命周期。

生命周期是一个从开始到消亡的过程,起点和终点都是确定的,不确定的则是这个过程所持续的时间,所变化的形式。生命周期分析所要做的,便是理解这个过程,优化这个过程。

 

2. 产品和用户的生命周期

(1)产品生命周期

每一款产品在投入市场后,大体上都会经历探索期,成长期,成熟期和衰退期这四个阶段。

  1. 探索期最重要的是学习,学习到底哪些是目标用户,为了与这些用户互相适应,要如何优化这款产品;
  2. 到了成长期时,已对用户有了一定的理解,此时很关键的一点是“拉人头”,先把有效的用户圈起来,后面一切好说;
  3. 成熟期往往是一款产品价值爆发的阶段,活跃用户的氛围,增值付费的能力,都会达到峰值;
  4. 不可避免的,成熟期过去后,每一款产品都会迎来衰退期,只是有些产品一次衰退就挂了,另一些则进入到第二个周期里。

(2)用户生命周期

与产品生命周期相对应的,这款产品里的每一个用户也都有自己的生命周期。只是在应用市场里,用户的数量往往要远超于产品的数量,所以用户的生命周期也就呈现出更为丰富,更为多元的形态,有些用户注册后“一言不合”就走了,有些则一直留了下来。

总体上来讲,用户会经历新增,留存,活跃,沉默,流失这几个过程,只是这几个过程并不一定连贯,可以交叉穿越。比如从新增直接流失,这是“薅羊毛”的用户,比较常见于互金,理财类的产品;比如从留存直接流失,其中有一部分是在不同竞品间进行比较,当比较完成之后,便也直接流失了。

而那些真正完整经历了每个过程,并在每个过程的核心指标里表现优异的用户,便是我们需要关注的头部用户,他们往往会贡献出这款产品里最大的价值。

 

3. 生命周期分析的意义

通过对产品生命周期的分析,可以更好地打磨每个环节的转化情况,让产品和用户不断地相互适应,从早期的粗放式经营转化为一种更为精耕细作的方式。在用户成长体系的每一个关卡,进行引导和助力,量变会带来微小的质变。

 

二、数据处理

常见的数据处理方法,有移动平均,相关分析,数据变换等几种数据处理的方式。真实业务下的数据,往往都是带有噪音的,偶尔会有一些“坑坑洼洼”。

如果直接去看最终数据的话,往往是很不友好的,通过一些数据处理的技巧,能让我们更便捷地观察业务数据的变化情况,并猜想和验证这些数据变化背后的深层次原因。

 

1. 去平均化

设置统计指标的初心,是为了能把握整体业务的变化情况,平均数,中位数等的制定,都是为了观察业务数据的集中和离散趋势。

在很多的场景下,这些指标都是有效的,但并不代表它们可以适用于所有场景,当场景不合适时,只看这些指标反而会形成干扰。尤其是在用户体量很大,数据分布具有严重的“左偏”或者“右偏”时,只看平均值可能就不合适了。

去平均化,或者说是用户分组,便是应对这种情况的一种处理方式。其实就是在整体平均值发生变化时,通过对用户进行分组,观察用户内部的结构变化,可能会得到不一样的结论。整体平均值的增长,是否对应每一个用户组的增长?不同组是否会有不一样的变化趋势?

不同用户分组的留存趋势

当整体业务在以某种趋势变化时,不要用户分组的变化可能不是协同的。方向一致时,彼此的变化速度不一样,可能会在某个时间点形成交叉,并且之后又以不同的速度反向翻转。通过去平均化的方式,可以更好地理解用户内部的结构差异。

通过什么方式对用户进行分组更为合理?这个问题类似于在做机器学习的特征时,如何对连续属性的字段进行分箱,虽然分箱方法有很多,但等频和等距仍然是其中经典而常用的两种方式。应用到用户分组这里,等频就是按照数据量来分割,等距就是按照属性值来分割。

 

2. 留存矩阵

在生命周期分析的工作中,会有很多的场景都会涉及留存的统计,比如注册之后的留存,活跃之后的留存等,同时因为时间的推移,不同时期用户的留存情况可以形成一个留存矩阵。这个矩阵的设计,可以有不同的方式,能表达出所关注的用户群的留存趋势变化即可。

先分析得出不同形式的留存矩阵。得到留存矩阵后,从不同的视角出发,可以做不同角度的观察和分析。在每一个月份新增的用户群体,可以得到其在三个月/六个月/九个月之后留存比例的趋势变化情况。

不同距离月的留存趋势变化

 

3. 因子分析

对生命周期的分析过程中,不可避免地会要做一些因子分析,比如在具体环节下,对某项具体的指标(留存率,活跃频次,未来是否付费),是否存在一些较为有效的因子,能与其具备良好的相关性。

因子分析的结果,虽然不如深度的模型结果来的精准,但处理过程却相当简洁,在不同场景下总能找到一些有效的因子,是一种性价比相对良好的统计方式。

针对不同的产品,从不同的关注点出发,可以搭建起最适合自己的因子体系。其实不需要像金融市场的101因子等做得那么全面而深入,选择一些自己最关心的,同时与核心指标相关的一些因子,就可以做出一个有效的因子体系。此后有需求时,直接从中取数即可。

因子体系的结构

 

4. 一阶差分

做机器学习的特征选择时,有时会应用到一阶差分,通过观察其收敛的转折区域,从而筛选出更为有效的特征。这个方法也可以用在生命周期的场景里,因为这个场景涉及大量的长尾分布,由于头部和尾部的用户量级差异较大,所以其内部的变化速度很难直接观测出来。

尾部用户虽然量级较小,但往往是对产品贡献最大的那群人,所以其内部变化是值得关注的。

如图1所示,即是一个经典的长尾分布,但在这个分布里面,越是尾部的用户,越是我们需要关注的高活跃用户。通过图2,可以看出在这个长尾分布里面,不同区域的用户数量变化速度,头部和尾部的变化速度都是较大的,中部区域的用户变化则相对平稳。

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站不拥有所有权,不承担相关法律责任。如发现有侵权/违规的内容, 联系QQ15101117,本站将立刻清除。

联系我们

在线咨询:点击这里给我发消息

微信号:666666